2/EH-24 (ii) (Syllabus-2015)

2018
(April).

PHYSICS

(Elective/Honours)

(Electromagnetism, Electronics-I)
[PHY-02 (T)]

Marks : 56

Time: 3 hours
The figures in the margin indicate full marks for the questions
Answer Question No. 1 and any four from the rest

1. (a) Find the electric potential on the surface of a nucleus having mass number 6.4, atomic number 30 . Taking charge on proton to be $1.6 \times 10^{-19} \mathrm{C}$ and radius of proton $1.2 \times 10^{-15} \mathrm{~m}$.
(b) A conductor of length 64 cm is bent into a square and a current of 4 A is passed through it. Find the magnetic field at the centre of the square.
(c) A straight solenoid of length 1 m has 50 turns in the primary and 200 turns in the secondary. If the area of cross-section of the solenoid is $4 \times 10^{-4} \mathrm{sq} \mathrm{m}$, find its mutual inductance.
(d) Find the h-parameters of the circuit as shown in the figure below :

2. (a) State and prove Gauss' theorem in electrostatics and hence show that the total flux over a surface due to a charge
lying outside is zero.
(b) Obtain an expression for the potential
due to a due to a uniformly charged their spherical shell at an external point. d from the centre of an earthed of electrical imadius R. Apply the method on the sphere.
(b) Derive an expression for Gauss' law in the presence of a dielectric. Also discuss the integral form of Gauss' law. $4+3$
3. (a) An alternatin of Gauss' law. $4+3=7$ to the ends of m . $E_{0} \sin \omega t$ is applied resistance R, self-inducuit containing capacitance C. Salf-inductance L and of the circuit, phase the impedance current at any instant. angle and the $4+1+2=7$
(b) What is the quality factor for an $A C$ circuit? Prove that quality factor

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

5. (a) What do you mean by mutual $\begin{aligned} & \text { inductance? On } \\ & \text { mutual induction depend? }\end{aligned} \quad 2+2=4$
(b) State Faraday's law of electromagnetic induction. Prove that Faraday's law of electromagnetic induction can be expressed in the differential form

$$
\vec{\nabla} \times \vec{E}=\frac{\partial \vec{B}}{\partial t}
$$

and hence give the physical significance of the equation. State and explain Thevenin's theorem.
6. (a) State and $1+5=6$
(b) Using Norton's theorem, find the current through the 8Ω resistor in the network shown in the figure below : 5

7. (a) Describe with the help of a block diagram the working principle of a feedback amplifier. Derive an expression for the overall transfer gain. When does a feedback amplifier become oscillatory?

$$
2+2+1=5
$$

(b) What is a clipper circuit? Draw the circuit of a diode clipper which 'clips' the upper half of an input sin-wave lying above a reference voltage. $\quad 1+2=3$
(c) Draw and describe in brief about a twostage R-C coupled amplifier in CE mode.
8. ideal Op-Amp. What are inverting and Din-inverting terminals of an Op-Amp? gates only.

